计算机视觉与模式识别代码合集第二版three
Topic | Name | Reference | code |
Optical Flow | Horn and Schunck's Optical Flow | ||
Optical Flow | Black and Anandan's Optical Flow | ||
Pose Estimation | Training Deformable Models for Localization | Ramanan, D. "Learning to Parse Images of Articulated Bodies."NIPS 2006 | |
Pose Estimation | Calvin Upper-Body Detector | E. Marcin, F. Vittorio, Better Appearance Models for Pictorial Structures, BMVC 2009 | |
Pose Estimation | Articulated Pose Estimation using Flexible Mixtures of Parts | Y. Yang, D. Ramanan, Articulated Pose Estimation using Flexible Mixtures of Parts, CVPR 2011 | |
Pose Estimation | Estimating Human Pose from Occluded Images | J.-B. Huang and M.-H. Yang, Estimating Human Pose from Occluded Images, ACCV 2009 | |
Saliency Detection | Saliency detection: A spectral residual approach | X. Hou and L. Zhang. Saliency detection: A spectral residual approach. CVPR, 2007 | |
Saliency Detection | Saliency Using Natural statistics | L. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell. Sun: A bayesian framework for saliency using natural statistics. Journal of Vision, 2008 | |
Saliency Detection | Attention via Information Maximization | N. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS, 2005 | |
Saliency Detection | Itti, Koch, and Niebur' saliency detection | L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. PAMI, 1998 | |
Saliency Detection | Frequency-tuned salient region detection | R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk.Frequency-tuned salient region detection. In CVPR, 2009 | |
Saliency Detection | Saliency-based video segmentation | K. Fukuchi, K. Miyazato, A. Kimura, S. Takagi and J. Yamato, Saliency-based video segmentation with graph cuts and sequentially updated priors, ICME 2009 | |
Saliency Detection | Segmenting salient objects from images and videos | E. Rahtu, J. Kannala, M. Salo, and J. Heikkila. Segmenting salient objects from images and videos. CVPR, 2010 | |
Saliency Detection | Graph-based visual saliency | J. Harel, C. Koch, and P. Perona. Graph-based visual saliency.NIPS, 2007 | |
Saliency Detection | Learning to Predict Where Humans Look | T. Judd and K. Ehinger and F. Durand and A. Torralba, Learning to Predict Where Humans Look, ICCV, 2009 | |
Saliency Detection | Spectrum Scale Space based Visual Saliency | J Li, M D. Levine, X An and H. He, Saliency Detection Based on Frequency and Spatial Domain Analyses, BMVC 2011 | |
Saliency Detection | Discriminant Saliency for Visual Recognition from Cluttered Scenes | D. Gao and N. Vasconcelos, Discriminant Saliency for Visual Recognition from Cluttered Scenes, NIPS, 2004 | |
Saliency Detection | Context-aware saliency detection | S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010. | |
Saliency Detection | Saliency detection using maximum symmetric surround | R. Achanta and S. Susstrunk. Saliency detection using maximum symmetric surround. In ICIP, 2010 | |
Saliency Detection | Global Contrast based Salient Region Detection | M.-M. Cheng, G.-X. Zhang, NJ Mitra, X. Huang, S.-M. Hu. Global Contrast based Salient Region Detection. CVPR, 2011 | |
Saliency Detection | Learning Hierarchical Image Representation with Sparsity, Saliency and Locality | J. Yang and M.-H. Yang, Learning Hierarchical Image Representation with Sparsity, Saliency and Locality, BMVC 2011 | |
Sparse Representation | Centralized Sparse Representation for Image Restoration | W. Dong, L. Zhang and G. Shi, “Centralized Sparse Representation for Image Restoration,” ICCV 2011 | |
Sparse Representation | Efficient sparse coding algorithms | H. Lee, A. Battle, R. Rajat and AY Ng, Efficient sparse coding algorithms, NIPS 2007 | |
Sparse Representation | Fisher Discrimination Dictionary Learning for Sparse Representation | M. Yang, L. Zhang, X. Feng and D. Zhang, Fisher Discrimination Dictionary Learning for Sparse Representation, ICCV 2011 | |
Sparse Representation | Robust Sparse Coding for Face Recognition | M. Yang, L. Zhang, J. Yang and D. Zhang, “Robust Sparse Coding for Face Recognition,” CVPR 2011 | |
Sparse Representation | Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing | M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing | |
Sparse Representation | SPArse Modeling Software | J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online Learning for Matrix Factorization and Sparse Coding, JMLR 2010 | |
Sparse Representation | Sparse coding simulation software | Olshausen BA, Field DJ, "Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images", Nature 1996 | |
Sparse Representation | A Linear Subspace Learning Approach via Sparse Coding | L. Zhang, P. Zhu, Q. Hu and D. Zhang, “A Linear Subspace Learning Approach via Sparse Coding,” ICCV 2011 | |
Stereo | Constant-Space Belief Propagation | Q. Yang, L. Wang, and N. Ahuja, A Constant-Space Belief Propagation Algorithm for Stereo Matching, CVPR 2010 | |
Stereo | Stereo Evaluation | D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, IJCV 2001 | |
Image Denoising andStereo Matching | Efficient Belief Propagation for Early Vision | PF Felzenszwalb and DP Huttenlocher, Efficient Belief Propagation for Early Vision, IJCV, 2006 | |
Structure from motion | Nonrigid Structure From Motion in Trajectory Space | ||
Structure from motion | libmv | ||
Structure from motion | Bundler | N. Snavely, S M. Seitz, R Szeliski. Photo Tourism: Exploring image collections in 3D. SIGGRAPH 2006 | |
Structure from motion | FIT3D | ||
Structure from motion | VisualSFM : A Visual Structure from Motion System | ||
Structure from motion | OpenSourcePhotogrammetry | ||
Structure from motion | Structure and Motion Toolkit in Matlab | ||
Structure from motion | Structure from Motion toolbox for Matlab by Vincent Rabaud | ||
Subspace Learning | Generalized Principal Component Analysis | R. Vidal, Y. Ma and S. Sastry. Generalized Principal Component Analysis (GPCA), CVPR 2003 | |
Text Recognition | Text recognition in the wild | K. Wang, B. Babenko, and S. Belongie, End-to-end Scene Text Recognition, ICCV 2011 | |
Text Recognition | Neocognitron for handwritten digit recognition | K. Fukushima: "Neocognitron for handwritten digit recognition", Neurocomputing, 2003 | |
Texture Synthesis | Image Quilting for Texture Synthesis and Transfer | AA Efros and WT Freeman, Image Quilting for Texture Synthesis and Transfer, SIGGRAPH 2001 |
Topic | Name | Reference | code | |
Visual Tracking | GPU Implementation of Kanade-Lucas-Tomasi Feature Tracker | S. N Sinha, J.-M. Frahm, M. Pollefeys and Y. Genc, Feature Tracking and Matching in Video Using Programmable Graphics Hardware, MVA, 2007 | ||
Visual Tracking | Superpixel Tracking | S. Wang, H. Lu, F. Yang, and M.-H. Yang, Superpixel Tracking, ICCV 2011 | ||
Visual Tracking | Tracking with Online Multiple Instance Learning | B. Babenko, M.-H. Yang, S. Belongie, Visual Tracking with Online Multiple Instance Learning, PAMI 2011 | ||
Visual Tracking | Motion Tracking in Image Sequences | C. Stauffer and WEL Grimson. Learning patterns of activity using real-time tracking, PAMI, 2000 | ||
Visual Tracking | L1 Tracking | X. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009 | ||
Visual Tracking | Online Discriminative Object Tracking with Local Sparse Representation | Q. Wang, F. Chen, W. Xu, and M.-H. Yang, Online Discriminative Object Tracking with Local Sparse Representation, WACV 2012 | ||
Visual Tracking | KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker | BD Lucas and T. Kanade. An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 1981 | ||
Visual Tracking | Online boosting trackers | H. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR, 2006 | ||
Visual Tracking | Visual Tracking Decomposition | J Kwon and KM Lee, Visual Tracking Decomposition, CVPR 2010 | ||
Visual Tracking | Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects | H. Pirsiavash, D. Ramanan, C. Fowlkes. "Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects, CVPR 2011 | ||
Visual Tracking | Lucas-Kanade affine template tracking | S. Baker and I. Matthews, Lucas-Kanade 20 Years On: A Unifying Framework, IJCV 2002 | ||
Visual Tracking | Object Tracking | A. Yilmaz, O. Javed and M. Shah, Object Tracking: A Survey, ACM Journal of Computing Surveys, Vol. 38, No. 4, 2006 | ||
Visual Tracking | Visual Tracking with Histograms and Articulating Blocks | SM Shshed Nejhum, J. Ho, and M.-H.Yang, Visual Tracking with Histograms and Articulating Blocks, CVPR 2008 | ||
Visual Tracking | Tracking using Pixel-Wise Posteriors | C. Bibby and I. Reid, Tracking using Pixel-Wise Posteriors, ECCV 2008 | ||
Visual Tracking | Incremental Learning for Robust Visual Tracking | D. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual Tracking, IJCV 2007 | ||
Visual Tracking | Particle Filter Object Tracking |
一共248篇。one:47、two:45、three: 49、four: 47、five: 44、six: 16。